Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems

نویسندگان

  • André Baudler
  • Igor Schmidt
  • Markus Langner
  • Andreas Greiner
  • Uwe Schröder
چکیده

Copper and silver are antimicrobial metals, on whose surface bacteria do not grow. As our paper demonstrates, this commonly reported antimicrobial property does not apply to electrochemically active, electrode respiring bacteria. These bacteria readily colonize the surface of these metals, forming a highly active biofilm. Average anodic current densities of 1.1 mA cm 2 (silver) and 1.5 mA cm 2 (copper) are achieved – data that are comparable to that of the benchmark material, graphite (1.0 mA cm ). Beside the above metals, nickel, cobalt, titanium and stainless steel (SUS 304) were systematically studied towards their suitability as anode materials for microbial fuel cells and related bioelectrochemical systems. The bioelectrochemical data are put in relation to physical data of the materials (specific conductivity, standard potential) and to basic economic considerations. It is concluded that especially copper represents a highly promising anode material, suitable for application in high-performance bioelectrochemical systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of Multi-population Microbial Fuel and Electrolysis Cells Based on the Bioanode Potential Conditions

Microbial fuel cell and microbial electrolysis cell are two major types of microbial electrochemical cells. In the present study, we governed modeling of these systems by concentrating on the simulation of bioelectrochemical reactions in both biofilm and anolyte and considering the effect of pH on the microbial growth. The simulation of microbial fuel and electrolysis cells can be described by ...

متن کامل

Copper anode corrosion affects power generation in microbial fuel cells

Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxi...

متن کامل

Graphene-modified electrodes for enhancing the performance of microbial fuel cells.

Graphene is an emerging material with superior physical and chemical properties, which can benefit the development of microbial fuel cells (MFC) in several aspects. Graphene-based anodes can enhance MFC performance with increased electron transfer efficiency, higher specific surface area and more active microbe-electrode-electrolyte interaction. For cathodic processes, oxygen reduction reaction...

متن کامل

ERDC/CRREL TR-12-2 "Community Composition of Bacterial Biofilms Formed on Simple Soil Based Bioelectrochemical-chemical Cell Anodes and Cathodes"

Microbial fuel cells (MFC), as bioelectrochemical systems, hold promise as a sustainable source of energy for use in novel environments and settings. Although electrode biofilms, both anode and cathode, are critical to the production of power in these systems, the taxonomies of the biofilms that form are not fully understood. The specific objectives of the current study were to classify the bac...

متن کامل

Harnessing energy from marine productivity using bioelectrochemical systems.

Over the past decade, studies have shown that devices called microbial fuel cells (MFCs) can harness electricity from microbially mediated degradation of organic carbon, in both lab cultures and natural environments. Other studies have shown that MFCs can harness power from coastal and deep ocean sediments, as well as from plankton, without any fuel supplementation or microbial inoculation. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015